
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2017-09

Database creation and statistical analysis:
finding connections between two or more
secondary storage devices

Johnson, Jennifer M.
Monterey, California: Naval Postgraduate School

http://hdl.handle.net/10945/56140

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL
MONTEREY, CALIFORNIA

THESIS
DATABASE CREATION AND STATISTICAL ANALYSIS:
FINDING CONNECTIONS BETWEEN TWO OR MORE

SECONDARY STORAGE DEVICES

by

Jennifer M. Johnson

September 2017

Thesis Advisor: Neil C. Rowe
Second Reader: Michael R. McCarrin

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE
September 2017

3. REPORT TYPE AND DATES COVERED
Master’s Thesis 07-31-2014 to 9-29-2017

4. TITLE AND SUBTITLE

DATABASECREATIONANDSTATISTICALANALYSIS: FINDINGCONNECTIONS
BETWEEN TWO OR MORE SECONDARY STORAGE DEVICES

5. FUNDING NUMBERS

6. AUTHOR(S)

Jennifer M. Johnson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Department of the Navy
10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this document are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. IRB Protocol Number: N/A.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

We used MongoDB and created a database of each disk image and each unique sector found in the Real Data Corpus—a collection
of disk images held by the Digital Evaluation and Exploitation Lab. Using a partial database, we found the fraction of space that is
empty (contains NULLS) per secondary-storage image and for the entire database. We found duplicate images. We also characterized
some of the non-probative sectors found in our database. Future students may benchmark other databases and shard the database.

14. SUBJECT TERMS

digital forensics, sector hashing, common blocks, hash databases
15. NUMBER OF

PAGES 55
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2–89)

Prescribed by ANSI Std. 239–18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

DATABASE CREATION AND STATISTICAL ANALYSIS: FINDING
CONNECTIONS BETWEEN TWO OR MORE SECONDARY STORAGE DEVICES

Jennifer M. Johnson
Civilian, Department of Defense

B.S., San José State University, 2005

Submitted in partial ful�llment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2017

Approved by: Neil C. Rowe
Thesis Advisor

Michael R. McCarrin
Second Reader

Peter J. Denning
Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

We used MongoDB and created a database of each disk image and each unique sector
found in the Real Data Corpus—a collection of disk images held by the Digital Evaluation
and Exploitation Lab. Using a partial database, we found the fraction of space that is
empty (contains NULLS) per secondary-storage image and for the entire database. We
found duplicate images. We also characterized some of the non-probative sectors found
in our database. Future students may benchmark other databases and shard the database.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1

1.1 The Problem and Motivation 1
1.2 DOD Applicability 2
1.3 Research Questions . 3

2 Background 5

2.1 Core Concepts . 5
2.2 Secondary Storage Concepts. 9
2.3 Forensic Tools and Techniques 11

3 Methodology 15

3.1 Experimental Setup . 15
3.2 Designing Schema . 15
3.3 Data Set . 16
3.4 Database Creation . 17
3.5 Calculating the F Score . 20

4 Results 21

4.1 Top Common Matches . 21
4.2 Finding the Right Shannon Entropy Value 24
4.3 Investigating Ingestion Rate . 25
4.4 Speeding up the Database . 28

5 Conclusion 31

List of References 33

Initial Distribution List 37

vii

THIS PAGE INTENTIONALLY LEFT BLANK

viii

List of Figures

Figure 2.1 Example of SQL Table. 8

Figure 2.2 Partition Table Layout, mmls Command Output. 12

Figure 3.2 The _id Command Used to Identify each Image in MongoDB. . 16

Figure 3.1 Four Pieces of Useful Information. 16

Figure 3.3 Sector Layer Schema for MongoDB. 19

Figure 3.4 MongoDB Command . 19

Figure 4.1 A MongoDB Command to Find Most Common MD5 Hash. . . . 21

Figure 4.2 Most Common Hash with about 980 Images Inserted. 21

Figure 4.3 Inserting Secondary-Storage Images that Are Smaller than Approx-
imately 500 Mb. 26

ix

THIS PAGE INTENTIONALLY LEFT BLANK

x

List of Tables

Table 2.1 Example Strings O�set and Data in Hexadecimal Format. 9

Table 3.1 De�nitions of TP, TN FP, FN. 20

Table 4.1 Summary Counts of Di�erent Types of Sectors Found in the 1,537
Recognized Sectors of the 3,000 Most Common Sectors in Our Hash
Collection. 22

Table 4.2 Example of 512 Bytes of the Same Exact Character. 22

Table 4.3 Example in which Twenty-Five Percent or More of the Sector Is the

Table 4.4

Same Exact Character. 23

Example in which a Byte Value Increases by 1 Every 3 Characters. 23

Table 4.5 Example Repeating Sequence of Characters. 23

Table 4.6 Repeating Sequence of 5 or More Characters where the Character
Repeated Appears Random. 24

Table 4.7 Calculated F-Score given TP, FP, FN, and Shannon Values. 25

Table 4.8 A Closer Look at Di�ering Insertion Times for the Same Image Size. 25

Table 4.9 A Closer Look at Di�ering Insertion Times for the Same Image Size
Re-Inserted. 27

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

List of Acronyms and Abbreviations

B bytes

CPU central processing units

CS Computer Science

DEEP Digital Evaluation and Exploitation

DOD Department of Defense

EWF Expert Witness Compression Format

FBI Federal Bureau of Investigation

GB gigabytes

GPU graphical processing units

MD5 message digest 5

ME Mechanical Engineer

NSF National Science Foundation

NIST National Institute of Standards and Technology

NSRL National Software Reference Library

NTFS New Technology File System

NUS non United States

RAM random access memory

RDC Real Data Corpus

SHA-1 secure hash algorithm 1

xiii

SFS Scholarship For Service

SQL structured query language

TB terabytes

RCFL Regional Computer Forensics Laboratory

TSK The Sleuth Kit

YCSB Yahoo! Cloud Serving Benchmark

xiv

Acknowledgments

I have so many people to thank because I could not have written this thesis on my own.
This list is in no particular order, because I am grateful toward everyone. I thank my sister,
Edwarda, for all her love and support. What would I have done without all those phone
calls? I thank my mom, Sandra, for making me a capable adult—that was not magic, it
was hard work. I appreciate the kindness from my good friends, Casi and Joh: we cried,
we laughed, we exchanged way too many memes. Everyone in my cohort helped me get
through this program more than once. I thank my thesis advisor, Michael McCarrin, for his
epic patience during our marathon thesis meetings. I thank my second reader, Neil Rowe,
for his hard work and support. I thank Thao for reminding me that this program exists,
and for giving me her GRE contact and saying, “Here, sign up, do this now.” I thank my cat,
Sadie, because cat hugs are the best. She passed away before I could complete this thesis,
but I carry her in my thoughts. I thank the National Science Foundation (NSF) Scholarship
For Service (SFS) program for its existence, and for this chance to earn my master’s degree
in Computer Science (CS) with an undergraduate degree in Mechanical Engineering (ME).

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

CHAPTER 1:
Introduction

1.1 The Problem and Motivation
We address two problems. The �rst is managing large-scale heterogeneous digital-
forensic data. The second is �nding digital forensic connections between two or more
secondary-storage devices. The growing amount of data is our motivation. In recent
years, the per-gigabyte price of data has been steadily decreasing [1]. It is common for
the average consumer to purchase terabytes of digital storage space. As a consequence,
law enforcement agencies and cyber divisions in the Department of Defense (DOD),
have acquired terabytes of data while collecting criminal evidence. The Regional
Computer Forensics Laboratory (RCFL), established by the FBI, noted in their annual
reports that the Chicago lab, just one of the 15 labs, had collected and processed 580 TB
of digital data in one year [2].

Currently, examiners process data on secondary-storage images drive-by-drive using
forensic tools designed to run on a single workstation. Each drive is considered sepa-
rately, and little work is done to correlate information across di�erent images. From an
analyst’s perspective, this approach means important information may be missed. With
the current tools it is di�cult to detect collaboration or communication between owners of
devices acquired at di�erent times. Likewise, more needs to be done to study large-scale
patterns in acquired data. Studying trends in data may o�er insight into longstanding
forensic analysis problems. Carving deleted �les, for example is a longstanding forensic
problem, because it can be time intensive.

Analyzing trends can be divided roughly into two categories. One looking for things we
already know about and two trying to understand the unknown. Trying to understand the
unknown is generally much harder. The goal or our research is to �nd interesting patterns
across the hashed sections of the secondary-storage images of the Non-US portion of the
Real Data Corpus. You might have cringed at the vagueness of that question, perhaps you
are thinking only �ctional characters get to explore where no woman has gone before.

1

Neil deGrasse Tyson wrote a book Astrophysics for People in a Hurry which explores dark
energy and the mystery behind the force that expands the universe. On Real Time with
Bill Maher, Maher asks why we should care and Tyson says “I don’t know.” He goes on
to explain that about 90 or 80 years ago scientist were �rst discovering the atom and
got asked that very same question and now atoms are the basis for all current science and
technology [3]. While our work may not become the foundation for all forensic science 90
years from now the �eld is in serious need of exploration and innovation to �nd solutions
for dealing with large amounts of heterogeneous data.

A tactic that can reduce the processing time required for �le carving is matching blocks
that reside in allocated space with those blocks in unallocated space. When a �le is deleted
the �le-system no longer indexes it but the data is not erased [4]. The fact that the data
in is not erased is what makes it a possibility that we would �nd duplicate material and
that would be an interesting pattern. An experiment was performed on 150 disk images
in the Real Data Corpus (RDC), a collection of the contents of secondary-storage images
held by the Digital Evaluation and Exploitation (DEEP) Lab. For each image we identi�ed
partitions within the �le-system, built a sector hash database from overt �les on those par-
titions, scanned the unallocated (data not indexed by the �le-system) space for matches,
and tallied up the results. On one drive containing 7.12 gigabytes (GB) of allocated space
and 3.72 GB of unallocated space, we found 0.61 GB of duplicated material meaning about
16.29% of the unallocated space was duplicated.

What other statistical information can we �nd to reduce the processing time required for
�le carving or other types of forensic analysis? We will build a forensics database and
look for patterns over images on the RDC.

1.2 DOD Applicability
Cyberspace is an established warfare domain for the Navy. The U.S. Patriot Act, in Title
VIII, section 816, identi�es “Development and support of cybersecurity forensic capabil-
ities” as a priority [5]. We are adding to the nation’s forensic capabilities by researching
techniques to increase the digital forensics processing speed.

2

1.3 Research Questions
We scope our thesis by concentrating on analysis of trends that may be leveraged by foren-
sic tools. In addition, we intend to estimate the potential utility of suggested approaches
in terms of data reduction.

We are looking for relevant patterns in 3,000+ secondary-storage images in the RDC. The
features analyzed are divided into two categories. Category one includes basic features
that can be trivially extracted from the images in the corpus:

• Device name
• Device hash
• Number of sectors
• Sector size
• Device type
• Total disk size
• Number of partitions
• Partition o�sets
• Recognizability of the partition?
• Volume system type
• Block size of volume
• Partition type
• Partition allocation
• Description of partition
• File system type
• Block size of �le system
• Number of blocks in �les system
• Sector o�set of �le system

Category two is comprised of features that require more extensive analysis to measure:

• Fraction of space that is empty (or contains NULLS)
• Fraction of space that is unallocated or allocated
• Fraction of space that is unallocated and non-empty
• Fraction of non-empty unallocated space that matches allocated space

3

• Average (2-byte Shannon) entropy score of non-empty sectors
• Characterization of non-probative sectors

In order to gather statistical information on all the secondary-storage images on the non
United States (NUS) portion of the RDC, we �rst need to create a database for our analysis.
We have two important steps. Step 1 is building the database and step 2 is the analysis. We
have 124,104,544,671,744 bytes (B) of data in the NUS portion of the RDC. An important
research question is how long will it take to build a database of sector hashes?

4

CHAPTER 2:
Background

In this chapter, we provide a brief technical explanation of the hardware and software we
use to create the database. This chapter provides a technical explanation on the media we
are investigating, along with popular forensic formats and tools. In addition, we explain
hash matching techniques and how they are are currently used to match target �les or
carve �les but that we need to apply them to cross drive analysis.

2.1 Core Concepts

2.1.1 Shannon Entropy
In thermodynamics, entropy is the measure of randomness. In information theory, we
can measure the randomness with Shannon values. If we set X as a random variable, the
Shannon entropy equation is

H (X) = −
∑

x

p(x) log p(x).

2.1.2 F Score
“The F score can be interpreted as a weighted average of the precision and recall, where
an F score reaches its best value at 1 and worst at 0” [6].

Precision = tp
tp + f p

Recall = tp
tp + f n

5

F = 2 ·
1

1
recall +

1
precision

= 2 ·
precision · recall
precision + recall

2.1.3 Digital Forensics
Digital Forensics analysis is de�ned as gathering information that may be found on a
computer, any data-carrying device, and data sent over a network. The National Institute
of Standards and Technology (NIST) de�nes digital forensics as “the application of science
to the identi�cation, collection, examination, and analysis of data while preserving the
integrity of the information and maintaining a strict chain of custody for the data” [7].

Gar�nkel in his 2012 survey on lessons in digital forensics de�nes and describes the cur-
rent and trending state of the �eld. A major challenge in the �eld of digital forensics is the
growth of data diversity and data scale. Forensic analysts have a need for software that
meets these challenges [8]. Our work focuses on analyzing secondary-storage images in
a large scale.

2.1.4 Disk Images
The NUS portion of the Real Data Corpus is raw data extracted from secondary-storage
images [9]. The RDC primarily consists of USB �ash memory devices and computer
drives [9]. Despite the fact that the secondary-storage images had been discarded by
their owners, many of the drives in the RDC had not been erased by their owners [10].

The simplest type of forensic image is raw format: an exact sector-by-sector of the orig-
inal secondary-storage device. Another type of image contains the raw data as well as a
checksum and metadata; the most common implementation is EWF format. The check-
sum helps ensure integrity is preserved [4]. The metadata provides information about the
secondary-storage image. Our forensic data set, the RDC, splits each image into a �xed
size chunk and names those chunks in sequence (i.e., E01, E02, E03, E04, and so on).

6

2.1.5 Forensic Artifacts
When a �le-system has been compromised by an attacker we call the evidence left behind
forensic artifacts [11]. In general, forensic artifacts may also refer to useful information
found on the �le-system. For example, bulk_extractor identi�es credit card numbers, IP
addresses, email address and many other artifacts that are often called features [12].

2.1.6 Hashes
Hashes provide a �xed-sized identi�er for a variable amount of data. Our work used the
message digest 5 (MD5), a cryptographic message-digest algorithm used to create hashes
because it is extensively used within the forensic community and it is computationally
fast [13]. MD5 and other cryptographic hashes are 160 bits and are designed so that it
is very unlikely for a collision to occur [14]. A hash collision happens if two di�erent
inputs produce the same hash [15]. With the MD5 algorithm, 3.40 × 1038 hashes can be
generated on the average before a collision occurs. Secure Hash Algorithm 1 (SHA-1) is
another popular hash method.

2.1.7 Relational and Non-relational Databases
Our research uses both relational and non-relational databases to store and manages
forensic data. A database is a collection of information organized for quick random access.
The structured query language (SQL) is a programming language designed to manage a
database and it is a relational database. For example, the following SQL command says
select �ve rows and all columns from the tsk_file_layout table; tsk_file_-
layout is created by The Sleuth Kit (TSK).

s q l i t e > SELECT ∗ FROM t s k _ f i l e _ l a y o u t LIMIT 5 ;

The SQL command provides the output result shown in Figure 2.1: a table with attribute
columns, obj_id, byte_start, byte_len, and sequence. Each row represents a secondary-
storage image.

Metadata is data that “provides information about other data” [16]. A database schema
consists of metadata [17]. The columns of the table label the attributes of the data, and
the rows contain the data [17]. A schema created from a table is called relational. An

7

o b j _ i d b y t e _ s t a r t b y t e _ l e n sequence
−−−−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−−

0 67182592 8192 0
6 2672295526 8192 0
13 2248798208 16384 0
13 2248814592 4096 1
13 2248818688 4096 2

Figure 2.1. Example of SQL Table.

alternative database type is a non-relational database. An example is MongodDB which
uses a document-schema database [18]. MongoDB uses BSON documents to store data
records [18]. BSON is short for Binary JSON (JavaScript Object Notation) [19]. A docu-
ment is similar to a Python “dictionary” or hash table. A MongoDB document is identi�ed
with _id a required special key that identi�es the document and insures that it is unique
in the collection. In an SQL database the schema for the table must be designed before data
is added, changes are possible but can become complicated. In a non-relational schema,
data can be added to documents at any time and documents are easy to change; however,
a poor design is still possible [20].

The tsk_file_layout table stores the layout of a �le within the image [21]. The
tsk_files table lists every �le found in the images and has the basic metadata for
the �le [21]. The layout of �le can be connected to the metadata of the same �le using
a technique known as normalization [20]. Normalization connects two di�erent tables
with a reference, in this case with the obj_id column. Normalization, or connecting
two or more documents with a reference �eld is also possible using non-relational Mon-
goDB [20]. SQL queries use the JOIN command to relate multiple tables, non-relational
databases do not have that command so normalized documents have to retrieve all doc-
uments associated with obj_id and then manually link the two [20]. Denormalization
means that rather then using a reference, data is repeated in each table or document. De-
normalization allows for faster queries, the reason that non-relational databases are said
to be faster, but with slower updates [20].

It is common for SQL databases to enforce data integrity rules using foreign key con-
straints. A foreign key constraint is a column or combination of columns that establishes

8

and enforces a link between the data in two tables. This is not available in non-relational
databases [20]. MongoDB and other non-relational databases use Java script like query
commands and nested documents can become complex when trying to query [20]. When
creating a large database, distributing its contents among multiple servers may be nec-
essary; non-relational databases’ use of simpler data models makes this easier to do than
SQL-type databases [20]. This is the main reason we chose to build our database using a
non-relational database.

2.1.8 National Software Reference Library
The National Software Reference Library (NSRL) currently maintains a database of meta-
data consisting of a hash of the �le’s content, the �le’s origin (the software typically
required to view it), original name, and size [22]. The hash is produced using, among
other hash algorithms, MD5, and secure hash algorithm 1 (SHA-1) [23]. It is common to
�nd hundreds of thousands of �les during a digital forensics analysis and the goal of the
database is to reduce the time spent re-examining known �les [23].

2.2 Secondary Storage Concepts

2.2.1 File-System Storage
Writing data to a device requires consulting the correct �le-system data structure to de�ne
where each value should be written. Take "1 Main St." as an example, as used in Carrier’s
File System Forensic Analysis. The digit 1 is written in bytes 0 to 1 of the storage space,
then the string “Main St.” in bytes 2 to 9 in ASCII values and then the remaining bytes are
0 [4], see Table 2.1. This data maybe located any where on the device and the byte o�set
is relative to the start of allocated space.

Table 2.1. Example Strings O�set and Data in Hexadecimal Format.

O�set Hex String
0000000: 0100 4d61 696e 742e 0000 0000 0000 ... Main St.

9

2.2.2 Sectors
A sector is the smallest unit that can be accessed on media [7]. They are typically 512 B
or 4096 512 B, the size is determined by the manufacturer of the hardware. When needing
to read or write data on a disk it is done at the sector level [4]. A �le-system uses �le
allocation units, the smallest unit is a block, sometimes referred to as clusters, and is
typically 4096 B [7].

2.2.3 Sector Addresses
Reading and writing from the device requires creating addresses for each sector. A sector
will be assigned a new address each time a partition, �le-system or a �le requires it. The
address relative to the start of the physical media is called the physical address. The sectors
of a volume only need to give the impression that they are in consecutive order. Damaged
sectors may be skipped without the user transparently at the device level [4].

2.2.4 Data Unit Viewing
Carrier de�nes the term data unit viewing as knowing the address or the byte o�set of the
data. He notes that this method may be used to �nd potentially hidden data. For example,
FAT32 �le-systems do not use sector 3 so if the investigator uses the dcat tool found in
TSK she can view a speci�c data unit in either raw or hexadecimal. If that data is non-zero
then this may be evidence of hidden data [4]. If we �nd a sector match and note its byte
o�set per hardware division which is typically 512 B in order to view the entire �le we
also need to know the �le-system data unit, which may be be 1,024, 2,048 or larger.

2.2.5 Slack Space
If the size of a �le is not a multiple of the data unit size slack space occurs. This is because
a �le must allocate all of the data unit, even if the �le only needs part of the data unit [4].
In addition to this rule most �le-systems do not over write slack space so it contains data
from previous �les or from memory. The end of a �le and the end of the sector of the
�le is place where we can �nd slack space. Also sectors that have no �le content may be
an area of slack space [4]. The �le-system determines what is done with the slack space.
Some �ll the space with data from random access memory (RAM), or zeros [4].

10

2.3 Forensic Tools and Techniques

2.3.1 Artifact Extraction
We use TSK, a library, a framework, and a collection of command-line tools for forensic
investigation disk images [24]. The TSK is free to download at https://www.sleuthkit.org/.
TSK is organized by layers: disk-image, volume-system, �le-system, and hash-database
layer [25]. The tsk_loaddb command populates a SQLite database with metadata
from a disk image [25].

The disk-image layer includes the entire secondary-storage image. Many system con�g-
urations use a volume-system. In [7], NIST SP800-86 guide observes that logical volumes
are created from partitions in the image. The guide also explains that a partition is a log-
ical division of the disk-image into separate units. The guide describes how a �le-system
resides on one or more partitions and determines how �les are stored, organized, and ac-
cessed on logical volumes. The guide writes that there are many di�erent �le-systems;
however all have some common attributes. They use directories and in most cases sub-
directories to organize and store �les. File-systems make use of a data structure to point
to location of �les on the image. File allocation units are used to store a �le. A cluster is
a common name for the �le allocation unit [7].

The NIST SP800-86 guide discusses how a �le-system may hold data from deleted �les
or earlier versions of existing �les. This data can provide useful forensic information. A
deleted �le means the data structure that had pointed to that �le has been removed, not
the data itself. The data will remain as “free” space and in many cases is not over written
until the space is required [7]. Space that has not been allocated to a partition, perhaps
unallocated clusters or blocks, or space where �les or volumes have been deleted, may
also contains forensically useful information. The reason we hash at the sector level is to
grab all of the small bits of forensic data that would otherwise be lost in deleted, free, or
slack space.

Themmls command of the TSK tool displays the partition layout of a volume system [24],
as shown in Figure 2.2. In this example, we see that the sector size is 512 B. The image
uses New Technology File System (NTFS) and the sections that are unallocated space are
labeled. Some forensics tools require being able to understand the partition, �le-system

11

or �le type. However, other software like bulk_extractor “operates on disk images, �les or
a directory of �les and extracts useful information without parsing the �le-system or �le
system structures” [26].

P a r t i t i o n Tab le
O f f s e t S e c t o r : 0
U n i t s a r e i n 512− b y te s e c t o r s

S l o t S t a r t End Length D e s c r i p t i o n
0 0 : Meta 0000000000 0000000000 0000000001 Pr imary Tab le (# 0)
0 1 : −−−−− 0000000000 0000000062 0000000063 U n a l l o c a t e d
0 2 : 0 0 : 0 0 0000000063 0078108029 0078107967 NTFS (0 x07)
0 3 : −−−−− 0078108030 0078165359 0000057330 U n a l l o c a t e d

Figure 2.2. Partition Table Layout, mmls Command Output.

2.3.2 File Carving
File carving is a data recovery technique that searches for a �le’s signature in a given
image. A �le’s signature contains the �le’s header and footer. Carving extracts the �le’s
contents, or the blocks between the header and footer [4]. The �le-system meta-data is
not required and this means that �les maybe carved from unallocated space [4].

Full �le hashes are limited with respect to their ability to identify carved �les because the
hash that makes each �le’s content unique will only match identical content. Therefore,
a small change to a �le or a corrupt block means the hash will change and the �le will
no longer be identi�able [27]. In order to solve this problem, Gar�nkel explores using
cryptographic hash functions on sectors or blocks of data in order to search for target
�les [28]. The term hash-based carving means searching for the target �le in a given
secondary-storage image by �rst hashing blocks of the �le, rather then the entire �le
[28].

Gar�nkel et al. developed a tool and called it frag_�nd because it is a hash-based carver
that identi�es �les using sector-by-sector hash comparisons. The tool can identify �les
because “there exist distinct data blocks that, if found, indicate that the entire �le from
which the block was extracted was once resident on the media in question” [28].

A “probative,” or distinct block, is a block that indicates a high probability that the entire

12

targeted �le was on the device at some point. A common block, the most common being
a set of all NULLs, is a block that does not give strong evidence of a correlation between
the data region’s in which it is found. “Non-probative” is another term for common block
[29], [30].

Hash-based carving inherently increases the size of the data a forensic analyst must pro-
cess. If we for example make a gross assumption that each �le needs to be sectioned into
1,000 blocks and if we had been dealing with 10 million �les, we are now dealing with
10 billion hash blocks. In addition the algorithms required to match the blocks take up a
considerable amount of RAM and central processing units (CPU) resources. The factors
we can adjust to attempt to speed up matching are the hardware, the type of database in
which the blocks are indexed, the algorithm to search the database or all those methods
in combination.

Collange et al. in their 2009 study noted that the “ability to detect fragments of deleted
image �les and to reconstruct these image �les from all available fragments on [a] disk is
a key activity in the �eld of digital forensics.” The brute force method of comparing the
contents of each sector on a given secondary-storage image with the target �le sectors
is time consuming. The study showed that this problem maybe solved using graphical
processing units (GPU) in parallel. They chose to use the djb2 hash algorithm (named
after Daniel Julius Bernstein) for its computational speed even though they found a .33%
collision rate. The research found that their parallel implementations of GPU hardware
enabled them to search for deleted �le fragments at a rate of 500 MB/s [31].

In 2012, Foster examined whether sector hashing is e�ective for identifying given forensic
artifacts. She �nds that a custom B-tree key-value store with a Bloom �lter is the most
e�ective type of database to query sector hashes, looking for distinct blocks. She shows
that even over a large set of data (Govdocs, OCMalware, and NSRL) that distinct blocks
still exist and can be used to ID �les and software. In order to scale the distinct blocks
method the database must be able to store the �le block hashes of every �le disk at I/O
speed. In 2012 that speed was calculated at 150 K sectors/second because that is how fast
a 1 TB drive of 512 B sectors could be read. However, with media sampling the rate drops
to few thousand transactions per second because a 72000 RPM hard drive can perform 300
seeks per second. If the addresses are non linear then it takes longer to seek. Foster notes

13

the limitation that �les must be sector aligned on the disk for successful identi�cation
[32]. The bulk_extractor scanner was created as a tool that builds and search the Bloom
�lter database [8], [12].

14

CHAPTER 3:
Methodology

3.1 Experimental Setup
First, we build a database designed to inspect unique individual sectors of the images
in our collection. Then we investigate the fraction of sectors that are empty, compare
matches in allocated and unallocated space within the same image and across multiple
images. We also match and compare individual sectors with metadata from volume, par-
tition and �le-systems, as well individual �les.

3.1.1 Hardware
We ran our experiments on a server of 64-cores and a 512 GB main memory node that is
dedicated for Digital Evaluation and Exploitation Lab, or DEEP, use.

3.1.2 Software
We used Python version 3.5.1 to automate our tools. We used MongoDB version 3.0.14
for our database. We used Pymongo version 2.5.2 as the interface between Python and
the MongoDB software. We are using The Sleuth Kit or, TSK, version 4.1.3. TSK con-
sists of a static C/C++ library in addition to command line tools. TSK can create SQLite
databases of metadata extracted from each image and we used schema version 2. Rather
than use SQLite, leave this information in, we import it into MongoDB because the �exi-
ble documents of MongoDB allow for larger collections to be split across multiple servers.
We used the library libewf to access the Expert Witness Compression Format (EWF), the
pyewf bindings allows us to do this using Python [33]. The pyewf library allows us to
convert EWF to raw format, which we divide into 512 B sectors.

3.2 Designing Schema
To set up our database, we �rst constructed a non-relational schema for the secondary-
storage images. We designed a schema to contain metadata about each image. This meta-

15

{ ‘ _ id ’ : ‘ 02 b a 1 d 4 a 1 2 3 3 3 a 8 3 3 2 1 8 5 3 8 b 8 d a b 9 c f d ’ }

Figure 3.2. The _id Command Used to Identify each Image in MongoDB.

data was extracted �rst using TSK and stored in SQLite �les, one for each image. The
ewfinfo command from TSK gives four pieces of useful information, (see Figure (3.1)):
the MD5 hash of the image, the size of the image, the name of the device, and whether
the partitions of the device’s volume-system are recognizable. We used the MD5 hash of
the image as a key to track which sector we are referring to. We used the size as a way
to sort the images so that we could use the smaller images �rst.

[‘ 4 f 1 4 e c e 1 4 e 4 e 6 2 7 6 d a 1 f 2 0 c c 9 c 9 e 8 8 1 8 ’ , 2 4 9 0 3 6 8 ,
‘ / corp / nus / d r i v e s /AE/ AE10−0023/ AE10 −0 0 2 3 . E01 ’ , ‘ yes ’]

Figure 3.1. Four Pieces of Useful Information.

3.3 Data Set
Our data set consists of the secondary-storage images in the non-U.S. portion of the
Real Data Corpus. At the time of our experiment we had 3,196 images in EWF format
(with the EnCase extension) on the NUS portion of the RDC. Before we begin building the
database we checked for duplicate MD5 hashes on the images, so as to not duplicate work.
We found that we have 2,914 unique hashes and 122 non-empty images that require
further inves-tigation because they appear to be duplicates. We measured
124,104,544,671,744 bytes of data total. See Figure 3.2 for an example of how we de�ned
a document by MD5 hash.

The attributes we retrieve from the TSK tsk_loaddb command are as follows:

• TSKtsk_loaddb produces a SQL table named tsk_image_info that holds
the metadata of the type of disk image format, the sector size, the sequence of image
parts and the time zone. We also include the image name, the number of sectors in
an image, and the image size.

• The volume layer key-value pair is nested in the event that we have more than one
volume. TSK tsk_loaddb produces a SQL table named tsk_vs_info and

16

holds the following metadata: type of volume-system, the byte o�set where the
volume-system starts in bytes, and the block size in bytes.

• The partition layer key-value pair is nested in the event that we have more than one
partition. TSK tsk_loaddb produces a SQL table named tsk_vs_parts and
holds the metadata. The address of the partition, the o�set of the partition start in
bytes (zero being the start of the image), the number of sectors in the partition, and
a description of the partition type including allocation.

• The �le-system layer key-value pair is nested in the event that we have more than
one �le-system.

• TSK tsk_loaddb produces a SQL table named tsk_fs_info and holds the
meta-data of the o�set of the �le-system start in bytes (zero being the start of the
image), the type of �le-system, the block size in bytes, the block count or the number
of blocks in the �le-system and the address of the root directory and the �rst valid
address and the last.

If the �le-system starts at an address that is not evenly divisible by our block size, then
starting to hash the sectors at the beginning of the image, or 0, means ignoring �le-system
alignment. If the �le-system alignment is not taken into account the sector hashes will
not be aligned with the �le block hashes and matches will not be found [29]. This is a
problem if we choose to hash 4086 B blocks and the �le-system starts on sector 63, and
the underlying sectors are 512 B and not 4096 B. If the sector size is the same as the block
size we are hashing there is no alignment problem. It is typical to see �le-systems start at
sector 63 with the images in our holdings.

3.4 Database Creation
In order to create our database of hashed sectors for the entire media on the non-
U.S. portion of the Real Data Corpus we �rst considered using hashdb. It is easy to
con�gure for use with hash blocks of 512 B. However, although hashdb can handle billions
of hashes, it cannot easily scale to the approximately 240 billion hashes required to
represent all 512 B sectors in the RDC. In addition, if we wanted to do a cross drive hash
match, hashdb may not be the ideal tool, since it relies on a tree-based storage structure
that would require O(n2) look ups.

17

MongoDB has the advantage of being more �exible but the disadvantage of not being
as fast. We started the database by successfully importing the image, partition and �le-
system information from TSK output. Having that information made it easy to �nd that
all of the images use 512 B sector as the smallest division. We know that �le-systems are
sector aligned because we used 512 B sectors and not 4096 B.

The bulk of our database consists of MD5 hashes we created from secondary-storage im-
age sectors. To create these documents, we open and read each image at the byte level,
section the image into 512 B, and create an MD5 hash of each sector. Each hash is used to
create a document in MongoDB. The resulting document contains a list of source hashes
in the key src_id. We can use this �eld to track if we have seen the same MD5 hash in
multiple secondary-storage images. We also track the number of times we have seen the
MD5 hash on a secondary-storage image, and the total number of times we have seen it.
We also add the ten most recent o�sets at which we have seen the MD5 hash. This value
is capped at ten because, while most hashes are rare, a few repeat thousands or millions
of times. Stating every o�set for these pathological cases can cause the document to grow
too large, as seen in Figure 3.3.

In order to create the MongoDB documents as shown in Figures 3.2 and 3.3, we used
the MongoDB UpdateOne command to insert our dictionary into our database. We
perform the task in parallel on each image using our 64 available cores. The MongoDB
UpdateOne command is used in conjunction with MongoDB’s bulk write commands.
Each command is put into a list and looks as seen in Figure 3.4.

18

{ ‘ s r c _ i d ’ : [
‘ 4 f 1 4 e c e 1 4 e 4 e 6 2 7 6 d a 1 f 2 0 c c 9 c 9 e 8 8 1 8 ’ ,
‘ c e 8 f c 1 e d 3 7 2 d 6 9 c f b 9 4 f 0 c b 2 0 f 4 7 9 e 6 2 ’ ,
‘ 574 b 0 b b 1 3 c f 3 c 2 a 1 e 2 3 4 9 4 5 d e f 4 8 0 e b 7 ’ ,
‘ 2 d f 6 8 f 2 4 d f 5 4 1 1 5 5 6 b f 1 d 8 2 9 b d 1 4 2 b 0 2 ’ ,
‘ e 7 f 9 0 c 5 e 0 d 3 d 5 4 b f 8 3 7 4 4 1 4 1 9 3 d 6 b 8 3 5 ’ ,
‘ a 8 5 9 e 3 5 6 2 f 0 b d 4 d 1 4 7 4 9 d 4 e 3 8 7 8 8 9 4 d e ’] ,

‘ p e r _ s o u r c e _ c o u n t ’ : {
‘ 4 f 1 4 e c e 1 4 e 4 e 6 2 7 6 d a 1 f 2 0 c c 9 c 9 e 8 8 1 8 ’ : 1 ,
‘ c e 8 f c 1 e d 3 7 2 d 6 9 c f b 9 4 f 0 c b 2 0 f 4 7 9 e 6 2 ’ : 1 ,
‘ 574 b 0 b b 1 3 c f 3 c 2 a 1 e 2 3 4 9 4 5 d e f 4 8 0 e b 7 ’ : 1 ,
‘ 2 d f 6 8 f 2 4 d f 5 4 1 1 5 5 6 b f 1 d 8 2 9 b d 1 4 2 b 0 2 ’ : 1 ,
‘ e 7 f 9 0 c 5 e 0 d 3 d 5 4 b f 8 3 7 4 4 1 4 1 9 3 d 6 b 8 3 5 ’ : 1 ,
‘ a 8 5 9 e 3 5 6 2 f 0 b d 4 d 1 4 7 4 9 d 4 e 3 8 7 8 8 9 4 d e ’ : 1 } ,

‘ t o t a l _ c o u n t ’ : 6 ,
‘ o f f s e t ’ : { ‘ 4 f 1 4 e c e 1 4 e 4 e 6 2 7 6 d a 1 f 2 0 c c 9 c 9 e 8 8 1 8 ’ : [

3 1 4 8 8 0] ,
‘ c e 8 f c 1 e d 3 7 2 d 6 9 c f b 9 4 f 0 c b 2 0 f 4 7 9 e 6 2 ’ : [

9 9 4 1 5 0 4] ,
‘ 574 b 0 b b 1 3 c f 3 c 2 a 1 e 2 3 4 9 4 5 d e f 4 8 0 e b 7 ’ : [

3 7 9 3 6 9 4 7 2] ,
‘ 2 d f 6 8 f 2 4 d f 5 4 1 1 5 5 6 b f 1 d 8 2 9 b d 1 4 2 b 0 2 ’ : [

4 8 8 8 5 5 0 4 0] ,
‘ e 7 f 9 0 c 5 e 0 d 3 d 5 4 b f 8 3 7 4 4 1 4 1 9 3 d 6 b 8 3 5 ’ : [

6 9 1 9 1 6 8] ,
‘ a 8 5 9 e 3 5 6 2 f 0 b d 4 d 1 4 7 4 9 d 4 e 3 8 7 8 8 9 4 d e ’ : [

2 5 0 6 6 1 8 8 8] } }

Figure 3.3. Sector Layer Schema for MongoDB.

UpdateOne ({ ‘ _ id ’ : md5_hash } ,
{ ‘ $addToSet ’ : { ‘ s r c _ i d ’ : s r c _ i d } ,

‘ $push ’ : {
‘ o f f s e t .% s ’ % s r c _ i d : {

‘ $each ’ : [o f f s e t] ,
‘ $ s l i c e ’ : 1 0 } } ,

‘ $ inc ’ : {
‘ p e r _ s o u r c e _ c o u n t .% s ’ % s r c _ i d : 1 ,
‘ t o t a l _ c o u n t ’ : 1 } } ,
u p s e r t =True)

Figure 3.4. MongoDB Command.

19

3.5 Calculating the F Score
To calculate the F (see the equation in Section 2.1.2) score to screen simple patterns and
catch complex ones, we �rst took a random sample of 500 sectors. Then we identi�ed the
interesting sectors and label them as “positives.” The sectors are interesting if they have
not been screened by the characterizations we made by examining the top 1500 matching
sectors we discovered, as shown in Table 4.1 of Section 4.1. We created a �le and arranged
it so the �rst 250 are complex or “positives.” Then we calculate the Shannon entropy,
see Section 2.1.1, for each sector in our sample and used this as our threshold. We then
counted the number of true positives by using the set of representative thresholds and
computing how many positives were over the threshold; these were true positives. True
negatives are not required for the calculation of our F score. However, they occur when the
sector is “non-interesting” and they fall below the Shannon threshold. Then we computed
how many “non-interesting” were over the threshold; these were false positives. Then,
we computed how many positives are below the threshold; these were false negatives (see
Table 3.1).

Table 3.1. Definitions of TP, TN FP, FN.

True Positive (TP) “interesting” sector w/ entropy > threshold
True Negative (TN) “non-interesting” sector w/ entropy < threshold
False Positive (FP) “non-interesting” sector w/ entropy > threshold

False Negative (FN) “interesting” sector w/ entropy > threshold

20

CHAPTER 4:
Results

4.1 Top Common Matches
After ingesting 980 secondary-storage images, we saw that the most common sector hash
had 181,976,293 matches. We also examined the other most common matches. We used
the command in Figure 4.1, which took about 15 minutes to complete. The counts for the
top three sectors are seen in Figure 4.2. The nice thing about using MongoDB is that we
also could have examined the �rst 10 or 100 most common matches. For our analysis, we
examined the �rst 1500 sectors that had a match of 1 or more.

db . RDC_NUS . f i n d ({ } , { " _ i d " : 1 , " t o t a l _ c o u n t " : 1 }) .
s o r t ({ " t o t a l _ c o u n t " : − 1 }) . l i m i t (3)

Figure 4.1. A MongoDB Command to Find Most Common MD5 Hash.

{ " _ i d " : " d e 0 3 f e 6 5 a 6 7 6 5 c a a 8 c 9 1 3 4 3 a c c 6 2 c f f c " , " t o t a l _ c o u n t " : 1 8 1 9 7 6 2 9 3 }
{ " _ i d " : " b f 6 1 9 e a c 0 c d f 3 f 6 8 d 4 9 6 e a 9 3 4 4 1 3 7 e 8 b " , " t o t a l _ c o u n t " : 1 2 8 8 6 9 2 0 2 }
{ " _ i d " : " b d e 3 b a f 7 b c 5 2 f 4 d b 6 5 7 e f 3 f 8 c 4 7 b d c b b " , " t o t a l _ c o u n t " : 1 9 2 5 4 8 2 4 }

Figure 4.2. Most Common Hash with about 980 Images Inserted.

We know from previous experiments that most top matches are not probative [34]. They
are sectors with very simple patterns and therefore are not strongly correlated with foren-
sic artifacts. Because they cannot link a sector to a �le or link two images to one another
they should not be considered interesting.

We were able to identify 1,537 of the 3,000 most common sectors by comparing against
sectors on a set of computers we had in our laboratory. Table 4.1 is a breakdown of the
major kinds of 1,537 sectors. It is clear that many of these common sectors contain no

21

information that would be helpful to a forensic analyst. We will now discuss in more
detail what these patterns look like.

Table 4.1. Summary Counts of Di�erent Types of Sectors Found in the 1,537
Recognized Sectors of the 3,000 Most Common Sectors in Our Hash Collec-
tion.

Pattern Count
Single Repeating Character 68
Progressive Di�erence 74
25 % > Same Character 369
Repeating Sequence 6
Consecutive Random Number 156
Zero block of > 20 in middle 337
Shannon Entropy > 4 518
Interesting Patterns Remaining 9

We would like to eliminate the non-probative matches from our database. An easy exam-
ple is a pattern consisting entirely of one character. The most common sector, for instance,
consisted of 512 NULL characters. We found other characters repeated 512 times Table
4.2.

Table 4.2. Example of 512 Bytes of the Same Exact Character.

Single Character
13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 ...

Unnecessary NULLs in a sector can often be eliminated. However, if the NULLs are ran-
domly distributed within the sector, there can be 512!/500! ≈ 1033 possibilities—too many
to specify in advance.

We characterized the condition where 25% or more of the sector has the exact same char-
acter. If all of the repeating characters are at the beginning, and we make that character
NULL, this gives a lower bound of 255128 sectors that end with 384 NULLs. We are ac-
counting for a lot of scenarios with one algorithm. As an example, we show in Table 4.3
a pattern of mostly ASCII characters 255 with a few intervening NULLs.

22

Table 4.3. Example in which Twenty-Five Percent or More of the Sector is
the Same Exact Character.

25% > same character
... 255 255 255 255 255 255 255 255 0 0 0 255 255 255 255 255 255 255 255 ...

We saw a number of sectors consisting of 511 occurrences of the same character and one
occurrence of another character. For instance, we saw a sector of NULLs followed by a
single 255 character. We found it was useful to test if a quarter or more of a sector had
the same character. Similarly, if a 4-byte pattern repeated for more than a quarter of the
sector then that sector is most likely non-probative or common [32].

Another pattern we saw was where every three characters the following character in-
creased by 1. The in-between characters tend to be 3 NULL characters; however, some-
times it is a character and two NULLs. We can also describe this as an incrementing 4-byte
integer, see Table 4.4.

Table 4.4. Example in which a Byte Value Increases by 1 Every 3 Characters.

Progressive Di�erence
0 0 0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0 7 0 0 0 8 0 0 0 9 0 0 0 10 0 0 0 11
129 7 0 0 130 7 0 0 131 7 0 0 132 7 0 0 133 7 0 0 134 7 0 0 135 7 0 0 136 7 0 0 137 7
0 0 138 7 0 0 139

Repeating characters are another pattern we found frequently. We wrote a script to count
if it found two characters repeated. We also found repeating strings of 16 characters, see
Table 4.5.

Table 4.5. Example Repeating Sequence of Characters.

2 > more characters repeating
31 3 31 3 31 3

88 80 65 68 68 73 78 71 80 65 68 68 73 78 71 88
88 80 65 68 68 73 78 71 80 65 68 68 73 78 71 88

We found heuristics to identify sectors that are likely to be common. We did this by in-
vestigating sectors 1,500 that had a match of one or more. We successfully found patterns

23

Randomly
repeating

characters > �ve
71 71 71 71 71 146 71 146 210 210 210 174 174 174 174 69 69 69 69 69 69 93 93 93 93
239 239 239 239 239 239 117 239 117 239 117 117 117 57 57 57 57 57 57 57 57 57 57
57 57 57 57 57 17 17 57 17 17 17 17 17 17 17 17 17 17 17 20 20 20 20 20 20 20 20 20
20 20
20 20 20 88 20 17 174 30 34 252 252 252 252 252 252

Table 4.6. Repeating Sequence of 5 or More Characters where the Character
Repeated Appears Random.

to eliminate from our database because common blocks will not help us cross drives or to
�nd useful �les.

4.2 Finding the Right Shannon Entropy Value
After creating algorithms to eliminate some of the common blocks we encountered, we
were still left with simple patterns to consider. We can use an entropy algorithm to �nd
many other simple non-probative patterns. For instance, Table 4.6 shows a pattern that has
�ve or more repeating characters, but the repeating characters are random. An alternative
to using heuristics is to calculate the entropy of a sector and classify as uninteresting all
sectors with low entropy. While this computation is simple, it is not as individual as
heuristics based on observation. Thus forensic investigators have a decision to make.
Sometimes perfection is necessary, and sometimes it is not.

According to our Table 4.7, we can see that a Shannon Value of 4 will screen simple pat-
terns and catch complex ones, so we recommend this value. But not everything above the
threshold was correct, and this measure missed some of the patterns we referred to in the
previous section.

24

Table 4.7. Calculated F-Score given TP, FP, FN, and Shannon Values.
Shannon Value TP FN FP F-Score
4 491 9 12 0.9791
4.5 443 57 7 0.9326
5 391 109 6 0.8718
6 146 354 3 0.4499
7 11 489 0 0.0430
8 0 500 0 NA

4.3 Investigating Ingestion Rate
We started building our database by ingesting 100 of our images. We sorted from our
smallest of 2,490,368 B to our largest at 1,000,204,886,016 B. It took about 8 minutes to
ingest 100 images that are about 60 Mb. We have 118 images that are about 60 Mb or less.
To be exact, the �rst 100 images totaled about 4 Gb and that is 7,981,752 sectors of 512 B.

Then, we increased our ingest size to 500 images. They happen to be about 500 Mb in
size or less. It took about 8 hours to �nish. Those 500 images equal about 118 Gb total
or 231,530,983 sectors of 512 B. This means we increased the ingest size by about a factor
of 29. Yet, the time increased by about a factor of 60. To look for patterns we created a
scatter graph of time to ingest versus the size of the image, as shown in Figure 4.3. We
observe that with the exception of one outlier at 8 hours that both processing time and
size of the image increase linearly. We also observe that the same size image has range to
its insertion rate in four places: 60 Mb, 130 Mb, 255 Mb and 500 Mb. We created Table 4.8
so that we can examine the range more closely.

When looking at the range of values as in Table 4.8, we asked whether there was some-
thing unique about the data that took a long time. We reexamined the secondary-storage
images as seen in Table 4.8 to see if there was something unique about the secondary-
storage images that took the longest to process. These secondary-storage images had
the shortest and longest insertion times per the same size of image. The image with the
longest processing time was not always inserted last.

25

Figure 4.3. Inserting Secondary-Storage Images that Are Smaller than
Approximately 500 Mb.

Table 4.8. A Closer Look at Di�ering Insertion Times for the Same Image
Size.

Names ∼ Size Min Time (H:M:S) Max Time (H:M:S)
CN32-04 and IN10-0229 64 Mb 00:01:42 00:39:51
CN27-57 and CN21-01 128 Mb 00:01:49 01:37:56
CN32-51 and IN10-02014 255 Mb 00:02:33 03:21:46
CN32-85 and CN6-12 350 Mb 00:08:42 08:06:25
CN19-12 and IN133-1018 500 Mb 00:08:29 06:46:26

While the high volume of images that take a short time indicate there is no problem
with opening, reading and hashing most of the images, perhaps some of the images are
damaged. Perhaps the image is corrupted. We can tell from Table 4.9 that there is no

26

problem with any of the images that took a long time to ingest initially. We created a
new test database using only the targeted images. This means we are not accounting
for the possibility that those images simply have a large amount of the same exact hash.
When creating the database with the target images none of the images took longer than
5 minutes to process. This result provides more evidence that there is nothing too slow
about opening, reading and hashing each image.

Table 4.9. A Closer Look at Di�ering Insertion Times for the Same Image
Size Re-Inserted.

Names ∼ Size Min Time (H:M:S) Max Time (H:M:S)
CN32-04 and IN10-0229 64 Mb 00:00:15 00:00:55
CN27-57 and CN21-01 128 Mb 00:00:27 00:01:53
CN32-51 and IN10-0214 255 Mb 00:01:13 00:02:48
CN32-85 and CN6-12 350 Mb 00:01:24 00:03:48
CN19-12 and IN133-1018 500 Mb 00:01:44 00:04:39

Ingesting the secondary-storage images took so much time that we had to carefully con-
sider all the reasons and experiment on di�erent ways to insert the data. After �nding
that building our database was not going to be done in one run of our script we sorted
the images by size and limited the number of images that we would be inserting at once.
We logged timing data for each image. We started by inserting the images that were
approximately 500 Mb or smaller in size.

Creating the database this way immediately is slow. We will look at the numbers in detail
in Section 4.4. As we build the database, it is good to keep in mind some logical limitations.
Our speed is also bound by the read and write speeds of our private server’s hard drives.
MongoDB has granular locks and when a document is being written, only one instance of
MongoDB can write to it [35]. Write applications are atomic. MongoDB has concurrency
control. Each document has a unique index, which is the MD5 hash of each 512 B sector
[36]. In the case of multi-document transactions, or concurrency, MongoDB uses a two
phase commit. The actions are initialized and then applied [36]. This is how we can
use the multiple cores available.

27

4.4 Speeding up the Database
We analyzed our ingestion rates in terms of disk size over time in order to search for a
pattern that would allow us to calculate how long it will take to build our database. The
disk image that took the longest to ingest into the database was approximately 350 Mb,
and it took eight hours and 20 minutes. This is an outlier and when we re-ran the same
image it took just under 4 minutes to digest. This instance is extreme, but it points out
the reason why we need to run our scripts multiple times and take the average. We also
divided the overall insertion job into discrete jobs that include reading, creating the hash,
creating the MongoDB documents and inserting them into the database.

We ran the same script in parallel and kept the number of jobs at max three and then we
calculated the rate in GB per minute. We found that disk images that are one GB in size
take about three minutes to to open and read and hash. Inserting the hashes of those one
GB images into MongoDB can take between seven minutes and 40 minutes. It took about
six hours to process 16 one GB hard drives.

We have 124,104,544,671,744 B of data or about 124 terabytes (TB) of data. Best case
scenario it will take 1 minute to create the MongoDB documents and 7 minutes to insert
those commands per GB of data—8 minutes per GB of data. We calculate that
124,104 GB divided by 8 minutes equals a speed of 15513 GB per minute or 86 days,
which is 2.88 months.

It could be that the disk images with exceptionally long insertion times have a lot of the
same MD5 hashes. This could produce a delay because MongoDB locks that can occur at
the document level [18]. To investigate this possibility we examined CN19-12 and IN133-
1018. Recall that CN19-12 an approximately 500 Mb image, took 8.5 minutes to ingest. We
found that it had 972 of the exact same sector hash.

bf619eac0cdf3f68d496ea9344137e8b

This sector hash is all NULLs. IN133-1018, also an approximately 500 Mb image, which
took almost 7 hours to ingest, has 2,532 of the exact same sector hash

bf619eac0cdf3f68d496ea9344137e8b,

28

and has 940,636 of the sector hash

96c8e709c96dce8f9ca6f3d760479345.

It is encouraging that we see an increase in repeated hashes in the images that take the
longest. We now know we need to consider how to deal with a large number of matching
sectors.

While �nding this information, we observed that we had to search through all of the
MongoDB documents because the per source count key has nested values. It took 5,951
seconds, or over an hour and a half, to search through all of the documents. This is a
problem because when updating the document it will also take a long time to �nd the
correct sub document to update. MongoDB works fastest when it can use its index value.

We updated the MongoDB documents so that there is no nesting. With the updated
schema we were able to process 1,000 of the secondary-storage images, sorted by size
in six hours and 40 minutes; a signi�cant improvement. That was an ingest of 646 GB out
of 124 TB. Or a rate of 646 Gb ÷ 4000 min ≈ 1.615 Gb/ min so it would take roughly
124000 Gb × 1 min

1.615 Gb ≈ 53 days. Still quite some time but an improvement of 86 days. It
would be best to create the database in chunks and do an analysis in steps.

29

THIS PAGE INTENTIONALLY LEFT BLANK

30

CHAPTER 5:
Conclusion

We were able to build a partial database and characterize some of the non-probative sec-
tors that we found. It was our research goal to �nd interesting patterns across the hashed
sections of the images of the Non-US portion of the Real Data Corpus. What we found
was a way to �nd and therefore eliminate many of the common blocks that not only slow
down the ingestion of a large forensic database but also overwhelm the observation of the
interesting sectors.

When the developers of MonogDB decided to focus their e�orts on improving perfor-
mance from their 2.0 to 3.0 release, they focused on write performance and hardware
utilization [37]. As they set up their experiment for creating a benchmark they noted
“cases for MongoDB are diverse, and it is critical to use performance tests that re�ect the
needs of your application and the hardware you will use for your deployment. As such,
there’s really no ‘standard’ benchmark that will inform you about the best technology
to use for your application. Only your requirements, your data, and your infrastructure
can tell you what you need to know” [37]. In the best case scenario, we would have used
Yahoo! Cloud Serving Benchmark (YCSB), “a framework and common set of workloads
for evaluating the performance of di�erent ‘key-value’ and ‘cloud’ serving stores,” and
tried it on a few di�erent non-relational databases in an attempt to judge the best-suited
database for our hardware [38].

In addition, we could have used sharding on the database. Sharding is used to distribute
data over multiple servers [18]. Sharding works on large databases because it is meant to
spread CPU capacity and the I/O capacity over more than one disk drive [18].

31

THIS PAGE INTENTIONALLY LEFT BLANK

32

List of References

[1] M. Komorowski, “A history of storage cost (update),” cited on September 3, 2016.
Available: http://www.mkomo.com/cost-per-gigabyte-update

[2] Regional Computer Forensics Laboratory, “Regional computer forensics labora-
tory annual report for �scal year 2014,” 2014, cited on September 3, 2016. Available:
https://www.rc�.gov/downloads

[3] B. Maher, “Episode 426,” over time with Bill Maher, May 2017. Available: http://
www.hbo.com/real-time-with-bill-maher/episodes/15/426-episode/index.html

[4] B. Carrier, File System Forensic Analysis. Boston, MA: Pearson Education,
2005.

[5] “Uniting and strengthening america by providing appropriate tools required to
intercept and obstruct terrorism (USA Patriot Act) act of 2001,” US Government
Publishing O�ce, Tech. Rep., 2001. Available: http://purl.access.gpo.gov/GPO/
LPS39935

[6] D. Olson and D. Delen, Advanced Data Mining Techniques. New York, NY:
Springer, 2008.

[7] Guide to Integrating Forensic Techniques into Incident Response, NIST
SP800-86, 2006. Available: http://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-86.pdf

[8] S. Gar�nkel, “Lessons learned writing digital forensics tools and managing a 30tb
digital evidence corpus,” Digital Investigation, vol. 9, pp. S80–S89, 2012.

[9] “Digitalcorpora,” cited on July 25, 2016. Available: http://digitalcorpora.org/

[10] S. Gar�nkel, P. Farrella, V. Roussev, and G. Dinolta, “Bringing science to digital
forensics with standardized forensic corpora,” Digital Investigation, vol. 6, pp. S2–
S11, September 2009.

[11] J. R. Vacca, Computer Forensics: Computer Crime Scene Investigation. Newton Cen-
tre, MA: Delmar Thomson Learning, 2002.

[12] Forensics Wiki (2016, May). Bulk extractor. [Online]. Available:
http://www.forensicswiki.org/wiki/Bulk_extractor.

33

http://www.mkomo.com/cost-per-gigabyte-update
https://www.rcfl.gov/downloads
http://www.hbo.com/real-time-with-bill-maher/episodes/15/426-episode/index.html
http://www.hbo.com/real-time-with-bill-maher/episodes/15/426-episode/index.html
http://purl.access.gpo.gov/GPO/LPS39935
http://purl.access.gpo.gov/GPO/LPS39935
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-86.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-86.pdf
http://digitalcorpora.org/

[13] T. Bolan and G. Fisher, “Selection of hashing algorithms,” June 2010, cited on
September 21, 2017. Available: https://www.nist.gov/sites/default/�les/hash-
selection.pdf

[14] “Md5 and hmac-md5 security considerations,” RFC 6151, Internet Engineering Task
Force, Mar. 2011.

[15] K. H. Rosen, Discrete Mathematics and Its Applications 7th edition. New York: McGraw-
Hill, 2011. Available: https://books.google.com/books?id=C2c6twAACAAJ

[16] “Merriam-Webster,” June 2017, metadata. Available: https://www.merriam-webster.
com/dictionary/metadata

[17] A. Taylor, SQL All-in-One For Dummies. Chicago, IL: Wiley, 2011. Available:
https://books.google.com/books?id=373J4FVF4wkC

[18] “Mongodb,” cited on May 27, 2016. Available: http://www.mongodb.org/

[19] “bson,” June 2017. Available: http://bsonspec.org/

[20] C. Buckler, “Sql vs nosql: The di�erences,” June 2017. Available: https://www.
sitepoint.com/sql-vs-nosql-di�erences/

[21] “Sqlite database v2 schema,” cited on May 27, 2016. Available: http://wiki.sleuthkit.
org/index.php?title=SQLite_Database_v2_Schema

[22] National Institute of Standards and Technology. (2016, May). National
Software Reference Library Reference Data Set. [Online]. Available:
http://www.nsrl.nist.gov.

[23] S. Mead, “Unique �le identi�cation in the national software reference library,”
Digital Investigation, vol. 3, no. 3, pp. 138 – 150, 2006. Available: http://www.
sciencedirect.com/science/article/pii/S1742287606000958

[24] “Open source digital forensics,” cited on May 27, 2016. Available: http://www.
sleuthkit.org/index.phpl

[25] “Sleuthkitwiki,” cited on July 25, 2016. Available: http://wiki.sleuthkit.org/index.
php?title=Main_Page

[26] J. R. Bradley and S. L. Gar�nkel, “Bulk extractor 1.4 user’s manual,” Naval Post-
graduate School, Monterey, CA, Tech. Rep. NPS-CS-13-006, Aug. 2013. Available:
http://hdl.handle.net/10945/36027

[27] J. Young, K. Foster, S. Gar�nkel, and K. Fairbanks, “Distinct sector hashes for target
�le detection,” IEEE Computer, vol. 45, pp. 28–35, 2012.

34

https://www.nist.gov/sites/default/files/hash-selection.pdf
https://www.nist.gov/sites/default/files/hash-selection.pdf
https://books.google.com/books?id=C2c6twAACAAJ
https://www.merriam-webster.com/dictionary/metadata
https://www.merriam-webster.com/dictionary/metadata
https://books.google.com/books?id=373J4FVF4wkC
http://www.mongodb.org/
http://bsonspec.org/
https://www.sitepoint.com/sql-vs-nosql-differences/
https://www.sitepoint.com/sql-vs-nosql-differences/
http://wiki.sleuthkit.org/index.php?title=SQLite_Database_v2_Schema
http://wiki.sleuthkit.org/index.php?title=SQLite_Database_v2_Schema
http://www.sciencedirect.com/science/article/pii/S1742287606000958
http://www.sciencedirect.com/science/article/pii/S1742287606000958
http://www.sleuthkit.org/index.phpl
http://www.sleuthkit.org/index.phpl
http://wiki.sleuthkit.org/index.php?title=Main_Page
http://wiki.sleuthkit.org/index.php?title=Main_Page
http://hdl.handle.net/10945/36027

[28] S. Gar�nkel, A. Nelson, D. White, and V. Roussev, “Using purpose-built functions
and block hashes to enable small block and sub-�le forensics,” Digital Investiga-
tion, vol. 7, Supplement, pp. S13 – S23, 2010, the Proceedings of the Tenth Annual
{DFRWS} Conference. Available: http://www.sciencedirect.com/science/article/pii/
S1742287610000307

[29] S. L. Gar�nkel and M. McCarrin, “Hash-based carving: Searching media for com-
plete �les and �le fragments with sector hashing and hashdb,” Digital Investiga-
tion, vol. 14, Supplement 1, pp. S95 – S105, 2015, the Proceedings of the Fifteenth
Annual {DFRWS} Conference. Available: http://www.sciencedirect.com/science/
article/pii/S1742287615000468

[30] Wikipedia, “Photorec — wikipedia, the free encyclopedia,” 2016, [Online; accessed
5-July-2016]. Available: https://en.wikipedia.org/w/index.php?title=PhotoRec&
oldid=727327617

[31] S. Collange, Y. S. Dandass, M. Daumas, and D. Defour, “Using graphics processors
for parallelizing hash-based data carving,” in System Sciences, 2009. HICSS’09. 42nd
Hawaii International Conference on. IEEE, 2009, pp. 1–10.

[32] K. Foster, “Using distinct sectors in media sampling and full media analysis to de-
tect presence of documents from a corpus,” Master’s thesis, Naval Postgraduate
School, Monterey, CA, September 2012.

[33] K. Mastwijk, “Libewf is a library to access the expert witness compression format
(ewf),” cited on June 19, 2016. Available: https://github.com/libyal/libewf

[34] F. J. Gutierrez-Villarreal, “Improving sector hash carving with rule-based and
entropy-based non-probative block �lters,” Master’s thesis, Naval Postgraduate
School, Monterey, CA, March 2015.

[35] MongoDB, “Model data for atomic operations,” cited on Sept 9, 2016. Available:
https://docs.mongodb.com/manual/tutorial/model-data-for-atomic-operations/

[36] “Mongodb documentation,” cited on May 27, 2016. Available: https://docs.
mongodb.com/

[37] “Performance testing mongodb 3.0 part 1: Throughput improvements measured
with ycsb,” March 2015, cited on September 18, 2017. Available: https://www.
mongodb.com/blog/post/performance-testing-mongodb-30-part-1-throughput-
improvements-measured-ycsbm

[38] “Yahoo cloud serving benchmark,” April 2010, cited on September 18, 2017. Avail-
able: https://research.yahoo.com/news/yahoo-cloud-serving-benchmark/

35

http://www.sciencedirect.com/science/article/pii/S1742287610000307
http://www.sciencedirect.com/science/article/pii/S1742287610000307
http://www.sciencedirect.com/science/article/pii/S1742287615000468
http://www.sciencedirect.com/science/article/pii/S1742287615000468
https://en.wikipedia.org/w/index.php?title=PhotoRec&oldid=727327617
https://en.wikipedia.org/w/index.php?title=PhotoRec&oldid=727327617
https://github.com/libyal/libewf
https://docs.mongodb.com/manual/tutorial/model-data-for-atomic-operations/
https://docs.mongodb.com/
https://docs.mongodb.com/
https://www.mongodb.com/blog/post/performance-testing-mongodb-30-part-1-throughput-improvements-measured-ycsbm
https://www.mongodb.com/blog/post/performance-testing-mongodb-30-part-1-throughput-improvements-measured-ycsbm
https://www.mongodb.com/blog/post/performance-testing-mongodb-30-part-1-throughput-improvements-measured-ycsbm
https://research.yahoo.com/news/yahoo-cloud-serving-benchmark/

THIS PAGE INTENTIONALLY LEFT BLANK

36

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

37

	Introduction
	The Problem and Motivation
	DoD Applicability
	Research Questions

	Background
	Core Concepts
	Secondary Storage Concepts
	Forensic Tools and Techniques

	Methodology
	Experimental Setup
	Designing Schema
	Data Set
	Database Creation
	Calculating the F Score

	Results
	Top Common Matches
	Finding the Right Shannon Entropy Value
	Investigating Ingestion Rate
	Speeding up the Database

	Conclusion
	List of References
	Initial Distribution List

